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Abstract

Gecarcinid crabs have their life cycles in antagonistic scenarios, with their larvae developing in
the sea and the juvenile/adult phases occurring on land. Adults migrate from land to sea to
release their larvae, which return to land upon reaching the megalopa stage. Recruitment
and early instar traits in gecarcinids crabs remain unknown, leading to some species lacking
age-specific information. Despite massive recruitment observed in some insular gecarcinid
species (e.g. Gecarcoidea natalis), recruits are generally expected to be few and exhibit cryptic
behaviour, potentially occupying the burrows of conspecifics. We evaluated whether recruits
of Johngarthia lagostoma on Trindade Island, Brazil, co-inhabit larger conspecific burrows,
analysing this occurrence and examining their growth patterns, density, and body size across
different lunar phases. Johngarthia lagostoma recruits inhabit conspecific burrows, either
abandoned or occupied by adult crabs, but always with leaves stored in the inner chamber.
Recruits in co-inhabiting behaviour reach a maximum carapace width of 7.3 mm, and after
that, they are likely detected by the adults and possibly cannibalized or leave burrows natur-
ally. During the full moon, the higher density and smaller size of recruits were recorded, indi-
cating a recruitment lunar phase. It is crucial to ascertain the prevalence of co-inhabitation
behaviours in other land crab species to expand the knowledge about recruitment patterns
in these key community species.

Introduction

Currently, around 4900 crustacean species have been recognized for their terrestrial conquest,
among which crabs from the Brachyura infraorder are included. These crabs are part of the
Order Decapoda, one of six crustacean lineages known to have successfully colonized
terrestrial ecosystems (Marin and Tiunov, 2023). According to Wolfe et al. (2022), crabs
transitioned from marine to non-marine habitats between 5 and 15 times, while making the
reverse journey 3–4 times. This diversification primarily occurred in the Triassic period,
with family-level divergences happening in the late Cretaceous and early Paleogene periods.
The most derived crabs, commonly referred to as ‘true crabs’ (Eubrachyura), diverged
from their ancestral brachyurans during the Cretaceous period (Tsang et al., 2014; Luque
et al., 2021; Watson-Zink, 2021), and present some of the highest levels of terrestrial
adaptations among the six grades proposed by Watson-Zink (2021), which were possible
due to morphological, reproductive (e.g. aerial respiration, moulting, and development) and
physiological changes (e.g. osmoregulation, nitrogen excretion, desiccation resistance, and
thermoregulation).

Terrestrial and semi-terrestrial crabs comprise approximately 300 species. A high adapta-
tion to a terrestrial lifestyle can be observed in the family Gecarcinidae (Marin and Tiunov,
2023), where the species colonize land through marine environments (including intertidal
mudflats, sandflats, mangrove forests, etc.) (Watson-Zink, 2021). These crabs have a life his-
tory characterized by juvenile and adults occurring in terrestrial habitats, while their larvae
undergo a planktotrophic development that spans approximately 15–30 days in the marine
environment (five to six zoeal stages and one megalopa) (Colavite et al., 2021). The success
of these species depends equally on the capacity of migration between the land-sea gradient
in both phases and on their adaptations to survive in both environments (Bliss and Mantel,
1968; Burggren and McMahon, 1988; Hartnoll, 2010; Watson-Zink, 2021; Marin and
Tiunov, 2023). Some gecarcinid species are endemic to oceanic islands, which poses an add-
itional challenge for their migratory behaviour since the residence sites are even further from
the sea (Doi et al., 2019; João et al., 2021), and sometimes reach more than 1000 metres of
altitude (e.g. Gecarcinus ruricola in Caribbean Islands - Hartnoll et al., 2006). Indeed, studying
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insular gecarcinid species can be challenging due to their isolated
habitats; however, there is existing well-documented research
focused on understanding the biology and behaviours of crabs
within this family (Bliss et al., 1978; Hicks, 1985; Foale, 1999;
Adamczewska and Morris, 2001; Green, 2004; Hartnoll et al.,
2006, 2007, 2009, 2017; Liu and Jeng, 2007; López-Victoria and
Werding, 2008; Turner et al., 2011; Perger, 2014; Sanvicente-
Añorve et al., 2016; Tavares and Mendonça, 2022; João et al.,
2023a). However, there is a knowledge gap concerning how
these species transition from the larval phase to land. The process
of recruitment in these species has received limited attention, with
only a few documented events and scarce information available
(Hartnoll and Clark, 2006; Hartnoll et al., 2014).

There are two well-documented recruitment processes for
insular gecarcinids in the literature, the Christmas Island red
crab Gecarcoidea natalis (Hicks, 1985; Hicks et al., 1990) and
the Caribbean black crab Gecarcinus ruricola (Hartnoll and
Clark, 2006). In both cases, a notable similarity is the mass return
of megalopae, which creates a visually striking phenomenon
where the tideline is painted with a red colour. This mass return
event greatly facilitates the understanding of the overall recruit-
ment process in both species. Furthermore, it appears that the
behaviours of egg release and subsequent return of recruits in
gecarcinid crabs are connected to the phases of the full or new
moon (Hicks, 1985; Liu and Jeng, 2005, 2007; Hartnoll and
Clark, 2006). Among all other gecarcinid species where there is
some recorded information about recruitment in the literature,
the only common characteristic is the presence of megalopae
on land (Johngarthia lagostoma (H. Milne Edwards 1837) and
J. weileri – Hartnoll et al., 2014; J. planata – Erhardt and
Niassaut, 1970; Gecarcoidea lalandii, erroneously named as
G. natalis in the study – Webb, 1922; and Tuerkayana celeste –
Hicks et al., 1990). Although these works provide only basic
records, they do suggest that gecarcinid megalopae could live on
land, even venturing more than 100 metres away from the shore-
line. Unfortunately, the recruitment events can be infrequent and
sporadic, as observed for Gecarcinus ruricola presenting an inter-
val between each recruitment every 5 or 6 years (Hartnoll and
Clark, 2006), which makes documenting and studying these
events difficult.

Population studies on insular gecarcinids have highlighted the
absence of records on first crab instars and juvenile individuals.
As a result, these studies have indicated a concerning pattern of
population aging (Hartnoll et al., 2009; Turner et al., 2011); how-
ever, this could partially be attributed to methodological limita-
tions. The habitat preferences and distribution of juvenile crabs
remain unclear, which can lead to sampling biases that primarily
capture adult individuals (Turner et al., 2011). In addition, there
is evidence that juveniles of certain crab species occupy specific
habitats such as crevices and areas under rocks (as Tuerkayana
hirtipes – Hicks et al., 1990) or could be associated with adult
burrows (as described for T. hirtipes – Hicks et al., 1990; and
for Cardisoma carnifex – Vannini et al., 2003). Cleary, associating
with adult burrows can be considered an adaptive strategy because
burrows remain for at least five years in some cases (Green, 2004),
providing a humid and thermally stable habitat (Greenaway, 1989;
Berti et al., 2008), with chambers where leaves are stored by the
owner crab (O’Dowd and Lake, 1989; Vannini et al., 2003).

Johngarthia lagostoma, commonly known as the yellow land
crab, is an endemic species of insular land crab found in four
islands around the world, in the South Atlantic Ocean (Rocas
Atoll, Fernando de Noronha, Ascension Island, and Trindade
Island, according to Melo, 1996). Few studies were conducted
about their biology, mostly on Ascension and Trindade islands
(Ascension: Hartnoll et al., 2009, 2010; Trindade: João et al.,
2021, 2022, 2023a, 2023b; Tavares and Mendonça, 2022;

Entringer and Srbek-Araujo, 2023), where J. lagostoma population
structure was considered skewed for adult individuals (Hartnoll
et al., 2009; João et al., 2023a). In addition, the lack of clear in-
formation about the recruitment of J. lagostoma is of particular
concern for Brazilian islands (Rocas Atoll, Fernando de
Noronha, and Trindade Island) where this species is categorized
as Endangered – EN (Santana and Coelho, 2018; MMA, 2022),
following the IUCN criteria (IUCN, 2012). A pressing concern
that requires immediate investigation is the recruitment of J.
lagostoma to each island, as this information is crucial for asses-
sing the species’ demographics and informing conservation strat-
egies (Pinheiro et al., 2016). The only note about the species
recruitment in Trindade Island was made in 1987, where initial
crab stages were observed in galleries constructed by adults
(Tavares and Mendonça, 2022). So, in this study, we evaluate
the association between the first instars of J. lagostoma and
adult crab burrows in Trindade Island (Brazil) to co-inhabiting
behaviour, analysing recruits’ relative growth, population density,
and size in function of the lunar phases (full, waning, new, and
waxing moons).

Materials and methods

Study area and recruits sampling

All the samples were carried out on Trindade Island (20° 29′′

S- 29° 20.7′′ W), a volcanic island located in the South Atlantic,
approximately 1200 km off the Brazilian coast (Figure 1A, B). A
portion of Trindade Island has been designated as a large marine
protected area since 2018 (ICMBio, 2018). The island is perman-
ently inhabited by the Brazilian Navy, with a human population
of around 40 people, including military and researchers. The sam-
pling took place on the eastern face of Trindade Island, specific-
ally at Andradas Beach (Figure 1C), which is known to be an
important reproductive site for J. lagostoma (João et al., 2023a).
To evaluate the co-habitation of recruits on galleries of adult con-
specific, we conduct samples in January 2020, during the repro-
ductive season of J. lagostoma, which typically occurs between
December and May for Rocas Atoll and Ascension Island
(Teixeira, 1996; Hartnoll et al., 2010), and between October to
April for Trindade Island (Tavares and Mendonça, 2022; João
et al., 2023a).

At Andradas Beach (Figure 1D), J. lagostoma is the exclusive
species known to construct galleries in the supralittoral zone, pri-
marily associated with sand hill vegetation. These burrows are
called ‘transit burrows’ by Hartnoll et al. (2010) due to be con-
structed during migration or larval release but subsequently aban-
doned. For each lunar phase (full, waning, new, and waxing), we
systematically examined a minimum of 25 random and visibly
active burrows, characterized by the absence of debris accumula-
tion and the presence of other biogenic signals (e.g. tracks and
faeces) close to the opening. During the day period, when crabs
typically remain within their burrows, each gallery was carefully
and manually excavated until reaching its end or until to attain
an adult of J. lagostoma (Figure 1E). In this process, all excavated
sediment was collected and placed in a plastic tray and then
sieved. All adult crabs collected during the excavation were iden-
tified based on their respective gallery numbers, sexed, and
reserved in plastic boxes to be released back onto the beach at
the end of these procedures. The sex was verified by inspection
of abdominal dimorphism (males, subtriangular; and females,
semi-rounded) and the number of pleopod pairs (males, two
uniramous pairs; and females, four biramous pairs). Following
the sieving of the sediment, the recruits (Figure 1F) of each bur-
row were carefully placed in labelled individual plastic tubes with
their corresponding gallery number. These tubes were transported
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to the laboratory, where the recruits were crioanesthetized and
subsequently preserved in 70% alcohol. Finally, after excavation,
the sediment surrounding the burrows collapsed, mitigating the
risk of sampling the same burrow other times. Moreover, during
each lunar phase, samples were taken from different locations
within the sand dune vegetation to prevent potential bias due to
previous sampling.

Recruits: recognition, measurements, and biometric
relationships

In the laboratory, all recruits were evaluated to be identified as
megalopae or juveniles of J. lagostoma species, using diagnostic
characters informed for Gecarcinids by Cuesta et al. (2007),
respectively. Following, each exemplar was measured using an
image analysis system (KS-300®-Zeiss®) integrated to a stereo-
microscope (Axiolab®-Zeiss®, 0.01 mm). The carapace width

(CW, mm) was determined as the maximum cephalothorax dis-
tance between the lateral margins and used as the reference for
body size in crabs. Frequency histograms were constructed
using 1 mm CW size classes, from which the Fisher asymmetry
coefficient (SK, skewness) was calculated according to Sokal and
Rohlf (2012), as recommended by Pinheiro et al. (2022), and cat-
egorizing the size distribution as symmetric (−0.5≤ SK≤ 0.5),
positive asymmetric (SK > 0.5) of negative asymmetric (SK<−0.5).

Biometry of juveniles was registered in some morphological
structures (also in millimetres), represented by: carapace length
(CL, distance between the frontal to posterior margin of cara-
pace); major cheliped propodus length (PL, distance between
end of the fixed finger and the tooth at the propodus-carpus
joint); and abdominal width (AW, greatest width in the fifth
somite). Additionally, the weight of each recruit (WT, in grams)
was recorded using a digital analytical scale (Ohaus, 0.0001 g).
Individuals with carapace damage or missing appendages were

Figure 1. Geographic location of Trindade Island (Brazil). Where: (A) Southeast Brazilian coast showing the position of the Trindade Island; (B) general view of the
Trindade Island indicating the study area location (gray circle); (C) general view of Trindade Island; (D) general view of the study area (Andradas Beach); (E) frontal
view of a Johngarthia lagostoma adult in the Andradas Beach; and (F) dorsal view of a J. lagostoma recruit (scale: 1 cm).
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excluded from the biometric analysis. Since sexual dimorphism
recognized was not present in the recruits, they were not sexed.

To test the fit between all biometric measures, morphological
relationships were examined by using carapace width (CW) as
the independent variable and the other measures (CL, PL, AW,
and WT) as the dependent variables. Regression analysis was
employed to determine the fit, employing the power function
(Y = aXb) in each biometric relationship. To accomplish this, all
variables were log-transformed to calculate the linear models for
allometric growth rates. The slope value (constant ‘b’) was used
to determine relative growth to each relationship (CL × CW,
PL × CW, and AW × CW), where growth patterns could be cate-
gorized as isometric (b = 1), positive allometric (b > 1), or negative
allometric (b < 1). The same was conducted with the WT × CW
relationship, in this case with b-values characterizing these
weight’s growth patterns in relation to 3 (Pinheiro and
Fiscarelli, 2009). Student’s t-tests were conducted to assess depar-
tures from isometry in all relationships (α = 0.05), using b-values
of 1 or 3 in each case.

Relationship between juvenile recruits’ traits with lunar phases
and adult body size

To assess the influence of lunar phases on J. lagostoma recruit-
ment, the density of juvenile recruits (DE, individuals per burrow)
and corporal measures (CW and WT) values were used as
dependent variables, while the lunar phases (full, waning, new,
and waxing) were treated as factors. The normality assumption
and homogeneity of variances for all dependent variables were
assessed using Shapiro–Wilk (W) and Levene (L) tests, respect-
ively. Since the data did not meet the assumptions of parametric
distribution, a Kruskal–Wallis test (Sokal and Rohlf, 2012) was
conducted. In cases where statistically significant differences
were observed, post-hoc Dunn tests were performed to compare
the median values across different lunar phases. All these statis-
tical analyses were performed using R version 4.2.1 (R Core
Team, 2022) with the ‘dunnTest’ function available in the ‘FSA’
package (Ogle et al., 2023).

Evaluation of a possible association between juvenile recruits’
density/burrow (DE) and mean juvenile recruits’ body size
(CWJ), both in relation to adults’ body size (CWA), was submitted
to regression analysis by linear regression analysis, represented by
DE vs CWJ and CWJ vs CWA, respectively. This association was
also evaluated by Pearson’s linear correlation coefficient (r), con-
sidering ‘n-2’ degrees of freedom.

Results

Recruits’ occurrence and biometric relationships

A total of 128 burrows were examined, of which 54.7% (n = 70)
were empty without any recruits or owners. In 23.4% of the bur-
rows (n = 30), both J. lagostoma owner and recruits were present,
while in 21.9% (n = 28) only the recruits were found inhabiting
the galleries. Among the burrows with both owners and recruits,
53.3% had ovigerous females (n = 16), 43.3% had males (n = 13),
and only 3.3% had non-ovigerous females (n = 1). A total of 113
J. lagostoma recruits were sampled, with a density (DE) ranging
from 1 to 10 ind./burrow (mean ± standard deviation: 1.7 ± 0.9
ind./gallery; and variation coefficient: 52.9%), and their carapace
width (CW) ranged from 2.9 to 7.5 mm (4.9 ± 0.7 mm; and
14.3%, respectively) (Table 1). The size frequency histogram indi-
cated a symmetric distribution for all sampled recruits (SK = 0.3,
Figure 2).

Inside the burrows, the presence of both owners and recruits
was not random. Even in the absence of an owner, the burrows

appeared to have been recently abandoned, as indicated by the
absence of debris and the well-structured entrance and tunnels.
The owner was consistently found at the deepest part of the gal-
lery, which varied in distance from approximately 20 to 100 cm
from the ground surface. Regardless of the presence or absence
of the owner, the recruits were never found in this deepest part
of the gallery but were commonly associated with small crevices
along the sides of the tunnels. These crevices seemed to be used
by the owners for storing food, represented by the accumulation
of leaves and bioturbated sediment.

All biometric relationships showed statistical significance (P <
0.05), displaying a positive correlation (ρ≥ 0.85; P < 0.001), and
demonstrating good fits (R2≥ 0.70) in the regression analysis
(Table 1). The slopes calculated for CL × CW (b = 0.93) and
AW × CW (b = 0.93) indicated isometry, meaning there was pro-
portional growth between the dependent variables and CW. On
the other hand, the PL × CW relationship exhibited a lower slope
(b = 0.77) and confirmed negative allometry, indicating that there
was greater growth in CW compared to PL. Lastly, the WT ×CW
relationship confirmed isometry (b = 3.11), showing that the weight
(WT) and CW grew proportionally in the recruited individuals.

Relationship between juvenile recruits’ traits with lunar phases
and adult body size

Firstly, all dependent variables (DE, CW, and WT) were signifi-
cantly influenced by the lunar phases (DE: KW = 28.3, P =
0.003; CW: KW = 21.4, P = 0.0001; WT: KW = 22.3, P = 0.0001 –
Figure 3). For density of juveniles the highest values were recorded
during the full moon phase (DE: 1 to 10 ind./gallery = 2.0 ± 2.5
ind./gallery), which decreased significantly during subsequent
moon phases (Figure 3A). In the case of CW and WT values
(Figure 3B, C), an opposite pattern was observed, with the lowest
values registered during the full moon phase (CW: 3.2 to 5.7 mm,
4.7 ± 0.5 mm; WT: 0.003 to 0.06 g, 0.03 ± 0.01 g), followed by an
increase, with the highest values observed during the waxing
moon phase (CW: 5.4 to 7.5 mm = 6.4 ± 0.9 mm; WT: 0.06 to
0.1 g = 0.1 ± 0.04 g).

Overall, recruits increased an average size of 1.4 times between
full and waxing moons (=39.4% per month), corresponding to an
average increase in weight of 3.23 times (323% per month) for the
same period. Furthermore, a higher frequency of occurrence of
recruits in the galleries (65.9%) was recorded during the full
moon, being reduced by 50.5% after one month (lunar cycle),
in relation to the lowest percentage recorded on the waxing
moon (15.4%). Finally, only one megalopa was registered during
the studied period, found inside the galleries inspected in 7.1%
(n = 1) in the full moon.

The linear regression analysis for DE vs CWA relationship was
not significant (DE = 0.039 CWA – 0.394; R2 = 0.028; n = 25) with
a positive but not significant association between them (r = 0.168;
P > 0.001). The same was verified for CWJ vs CWA relationship,
which was not significant for the regression (CWJ = 0.0033
CWA – 4.73; R2 = 0.002; n = 25) and association among these vari-
ables (r = 0.045; P > 0.001).

Discussion

The knowledge of gecarcinid crabs recruitment is generally lim-
ited (Vannini et al., 2003; Hartnoll and Clark, 2006; Hartnoll
et al., 2014), with few reports available for some species, such
as J. lagostoma (von Fimpel, 1975; Hartnoll et al., 2014).
Specifically, research on J. lagostoma recruitment has mainly
focused on Ascension Island, where megalopae and first instar
crabs (4.2 mm CW) were found over 100 metres from the sea
(Hartnoll et al., 2014).
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In Brazilian islands (Fernando de Noronha, Rocas Atoll, and
Trindade), information is limited and sometimes unclear. A
report mentions a 7 mm dark brown crab leaving the sea on
Trindade Island (von Fimpel, 1975), raising doubts since other
gecarcinid crab recruitment records have found megalopae on
land (see Lafaix, 1969; Klaassen, 1975; Hicks, 1985; Hartnoll
and Clark, 2006; Hartnoll et al., 2014), including the anomuran
Birgus latro (Drew et al., 2010). Thus, we support the pattern sug-
gested by previous studies, where gecarcinid megalopae enter land
and then metamorphose into the first instar stage (Hartnoll et al.,
2014).

Chemical cues influence the metamorphosis from megalopa to
the first juvenile instar in both aquatic and semi-terrestrial bra-
chyurans (see Christy, 1989; Wolcott and de Vries, 1994;
Andrews et al., 2001; Diele and Simith, 2007; Simith et al.,
2010; Christy, 2011). These studies suggest that metamorphosis
is faster and more targeted when megalopae encounter conspe-
cific cues in sediment. However, its relevance to gecarcinid
crabs, especially as their megalopae transition to land, remains
unclear. In terrestrial environments, detecting and interpreting
chemical cues presents unique challenges (Krång et al., 2012;
Waldrop et al., 2016). Although it has been hypothesized that
the odour within a species’ burrow is more concentrated
(Schmidt and Diele, 2009), this aspect was not studied for J.
lagostoma.

The lack of records on the early instars of land crab species can
be attributed to three main factors, as suggested by Vannini et al.
(2003): (1) irregular recruitment patterns, which complicate the
timing of first instar detection; (2) previous sampling efforts
focused primarily on adults, potentially overlooking juvenile

Table 1. Regression analysis using all biometric relationships of Johngarthia lagostoma recruits from Trindade Island, Brazil

Biometric relationships
Function
(Y = a·Xb) R2 (%) t Allometry

CL × CW CL = 0.82·CW0.93 78.9 −1.27ns Isometry

PL × CW PL = 0.72·CW0.77 72.5 −4.01* Negative

AW × CW AW = 0.33·CW0.93 80.0 −1.23ns Isometry

WT × CW WT = 0.0003·CW3.11 83.1 −0.67ns Isometry

Where: AW, abdominal width; CL, carapace length; CW, carapace width; PL, cheliped propodus length; R2, coefficient of determination; t, calculated t-value evaluating departure from isometry
(b = 1), expressed by *P≤ 0.05 or nsP > 0.05; and WT, weight.

Figure 2. Abundance of Johngarthia lagostoma recruits in a size-frequency histogram
showing a symmetric distribution (SK = 0.28). Where: CW, carapace width; and num-
bers above the bars, N of each size-class.

Figure 3. Variation of the density (ind./burrow: A), size (CW, carapace width: B) and
weight (WT, wet weight: C) of the Johngarthia lagostoma recruits co-inhabiting bur-
rows with conspecific crabs along the lunar phases. Where: line inside the box,
median values; rhombus dot, mean values; box, interquartile range (IQRs); whiskers,
lowest and highest values within 1.5×IQRs; circle dot, original data on which a ran-
dom noise was added to avoid overlap. Distinct letters indicate significant differences
in the dependent variables between the lunar phases (P≤ 0.05).
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habitats; and (3) juvenile recruits, although present, often remain
concealed within refuges. Our findings suggest that the latter two
factors are particularly relevant to the recruitment of J. lagostoma.
The co-habitation observed in our study indicates that J. lagos-
toma recruits occupy the same habitat as adults but with varying
levels of concealment. However, no recruits were found in higher
elevation environments (e.g. non-flooded supralittoral or moun-
tainous areas), with or without vegetation.

Although our field research predominantly identified conspe-
cific burrows as habitats for recruits, this does not imply they are
the exclusive refuges. Due to the scope of our investigation on
Trindade Island, other potential habitats such as crevices and
spaces beneath rocks in the supralittoral zone were not explored,
leaving open the possibility of additional juvenile habitats.
Nevertheless, the information from our study, along with previous
records for J. lagostoma (Tavares and Mendonça, 2022) and simi-
lar findings for C. carnifex and Gecarcinus lateralis (see Vannini
et al., 2003 and Klaassen, 1975, respectively), offers valuable
insights into where recruits might undergo moulting stages before
constructing their own burrows.

The transition to terrestrial environments poses significant
challenges for crabs, with desiccation being a major concern,
especially on oceanic islands near the equator and tropics.
Trindade Island is characterized by intense east winds and fre-
quent heavy rains, often escalating into tropical storms that
flood its valleys (Pires et al., 2013). These rain events, known
as ‘Pirajás,’ occur almost daily during the summer, triggered
by the humid oceanic air rising over the island’s highest peak,
‘Desejado’ (∼600 m), resulting in storm clouds that precipitate
around the island (SECIRM, 2017). This study was conducted
in January, one of the island’s driest months, with an average
rainfall of 65 mm (SECIRM, 2017). Although Trindade is the
only Brazilian oceanic island with perennial watercourses and
springs (Marques et al., 2019), beaches like Calhetas and
Andradas have type IV drainage (direct to the ocean or with lim-
ited flow). This highlights the importance of ‘Pirajás’ in main-
taining sediment and undergrowth moisture during the key
reproductive period of this species, a factor that must be
considered.

Gecarcinidae crabs dig burrows in sediment to cool off and
may inhabit areas influenced by tides or vegetation
(Watson-Zink, 2021). Bliss (1963) observed that terrestrial crabs
often occupy elevated areas, creating shallow burrows that avoid
groundwater and help maintain low internal moisture.
Gecarcinid species within the genera Johngarthia, Gecarcinus,
and Gecarcoidea possess a ventral tuft of hydrophilic setae that
aids in water retention (Bliss, 1963, 2014; Guinot et al., 2018).
In J. lagostoma, these setae are located between the 5th

pereopod and the margins of the 1st–2nd pleonal somites
(Oliveira, 2014). More terrestrial species, such as Cardisoma
guanhumi and J. lagostoma, also utilize arthrodial membranes
for water absorption and have adaptations to minimize water
loss, including a strong seal of the branchial chambers (Wolcott,
1984).

After these rainy events, the water can be retained in the
interstices of the sediment, particularly at greater depths, as
well as in the larger biomass of undergrowth vegetation (e.g.
the grass Cyperus atlanticus). Even during the drier summer
months, this vegetation can provide a humid, shaded environ-
ment as its dried tussocks droop over the sediment, forming
so-called ‘vegetation crowns’. These areas frequently harbour
adult J. lagostoma, but notably not their juvenile counterparts.
This suggests that factors such as moisture levels and potential
chemical signals from adults may not be as influential in recruit
behaviour as initially hypothesized, given that recruits are not
found in association with adults in these ‘vegetation crowns’.

Further investigation is necessary to fully understand these
dynamics.

Adults of J. lagostoma are more active at night, likely due to
lower temperatures and higher humidity (Hartnoll et al., 2006).
Daytime activity varies, with individuals seen at dawn and dusk,
but rarely during intense sunlight and low humidity, particularly
in the absence of ‘Pirajás’. This susceptibility to desiccation likely
affects megalopae and juveniles, suggesting a reliance on summer
rains. Additionally, their activity may be synchronized with moon
phases that generate higher tidal flooding amplitudes, a pattern
common among semi-terrestrial crabs. The association of juvenile
recruits with adult burrows could be due to chemical attraction to
plant material stored within the burrows, a behaviour also noted
in other gecarcinid crabs [e.g. C. carnifex and C. guanhumi as
reported by Micheli et al. (1991) and Novais et al. (2021), respect-
ively], as well as in some semi-terrestrial crabs [e.g. Ucides occi-
dentalis and Ucides cordatus as noted by Twilley et al. (1997)
and Schories et al. (2003), respectively]. The plant material, rich
in nitrogen and carbon, undergoes decomposition, which
increases nitrogen content through microbial activity (Nordhaus
et al., 2017; Tongununui et al., 2021; Gao and Lee, 2022). The
decomposition process is further enhanced by J. lagostoma during
ingestion, breaking down complex molecules into more absorb-
able forms (Johnston et al., 2005). Microbial volatile organic com-
pounds (M-VOCs – e.g. alcohols, phenols, etc.) are produced
during decomposition (Gray et al., 2010; Tongununui et al.,
2021), with their composition depending on the vegetable
matrix, microorganisms involved, and fermentation conditions
(Rajendran et al., 2023). The odours emitted during this process
can provide information about food quality and potential benefits
or dangers to consumers (Price et al., 2011; Davis et al., 2013).
Gecarcinid crabs are particularly sensitive to these odours, as evi-
denced by their frequent capture using traps baited with aromatic
or strong-smelling fruits (e.g. lemon, pineapple, banana, jackfruit)
(Krång et al., 2012). Despite this common attraction in adults, no
studies have yet confirmed olfactory attraction in juvenile
Gecarcinidae species, highlighting an area for future research.

A question that remains unanswered pertains to the mechan-
isms through which recruits enter the burrows of larger crabs.
Possible factors could include the attractiveness of a moist or
shaded environment, the release of pheromonal signals by adults,
or the availability of pre-processed food within the burrows,
among other factors not addressed by us. While these aspects
remain speculative, answers to them could significantly contribute
to our understanding of the species’ ecology.

The symmetric size distribution of recruits suggests the range
at which co-inhabiting behaviour begins and ends, likely around
7 mm CW (Figure 2), when recruits either leave the burrow or
are detected and consumed by adults. A similar pattern is
observed in U. cordatus, where recruits co-inhabit conspecific
burrows until reaching a size that risks detection and cannibalism
(Vannini et al., 2003; Schmidt and Diele, 2009). Cannibalism is
common among gecarcinid species (Erhardt and Niassaut, 1970;
Bliss et al., 1978; Hicks, 1985; Wolcott, 1988). This risk increases
when food is scarce or during stressful periods, such as when
females await larval release (Wolcott and Wolcott, 1984, 1987;
Hartnoll et al., 2010). Consequently, crabs larger than 7 mm
CW likely leave the burrow to find alternative refuges.

Biometric analysis of recruits reveals trends typical of terres-
trial crabs but distinct from adult gecarcinids. For the CL × CW
relationship, recruits have a more square-shaped carapace, reflect-
ing a transitional morphology. While megalopae generally have a
longer carapace (Cuesta and Anger, 2005; Hartnoll and Clark,
2006; Cuesta et al., 2007; Hartnoll et al., 2014), adults show a
wider carapace due to negative allometry (Hartnoll et al., 2006).
This shift likely aids in adapting to terrestrial habitats, where a
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broader carapace improves gill chamber space for respiration
(Bliss and Mantel, 1968; Vannini et al., 2003). In contrast to typ-
ical positive allometry seen in juvenile gecarcinids (Hartnoll et al.,
2006; Molina-Ortega and Vázquez-López, 2018; Doi et al., 2019;
João et al., 2022), our study found negative allometry for chelipeds
and isometry for the abdomen in recruits. This suggests that
growth during this phase prioritizes overall body size rather
than specific structures linked to sexual maturity (Hartnoll,
1982). The WT × CW relationship in recruits also displayed isom-
etry, unlike the negative allometry seen in adults (Hartnoll et al.,
2006; Molina-Ortega and Vázquez-López, 2018), reinforcing the
focus on balanced body growth during recruitment.

Our findings regarding the density of recruits and their body
measurements (CW and WT) reveal a distinct pattern associated
with lunar phases, at least during our sampling period (January
2020). We observed an inverse relationship, whereby higher
recruit densities were observed during the full moon, which sub-
sequently decreased in the following phases. Furthermore, we
found that the smallest recruits were sampled during the full
moon, while their mean size and weight increased in subsequent
moon phases. These observations suggest that there was a peak in
recruitment activity during the full moon, followed by growth of
the recruits within the owner burrows during the subsequent
phases. Worth noting, that only one megalopa was captured in
this study during the full moon, confirming the starting point
of the recruitment process of this species. The reproductive pro-
cess of many gecarcinids is known to be influenced by lunar
phases, particularly during periods of larger tidal amplitudes,
such as the full and new moon (Klaassen, 1975; Liu and Jeng,
2005, 2007). However, the specific timing of recruitment for J.
lagostoma remains largely unknown, with only two instances
associated with the new moon reported for individuals from
Ascension Island (Hartnoll et al., 2010). In the case of other
gecarcinid species, such as G. lalandii and Epigrapsus notatus, a
significant release of larvae by females has been observed during
the new moon (Liu and Jeng, 2007) and full moon (Liu and Jeng,
2005), respectively.

Recruitment in gecarcinid species is generally sparse, raising
concerns for their conservation (Hicks, 1985; Hartnoll and
Clark, 2006). Demographic studies of the Gecarcinidae family
show low juvenile proportions, ranging from 8.5% for T. hirtipes
(Turner et al., 2011) to 26% for Gecarcinus ruricola (Hartnoll
et al., 2006) and 36.4% for E. notatus (Doi et al., 2019).
Recruitment of individuals under 10 mm CW is rare, typically
seen only in species with massive recruitment events (Hicks,
1985; Hartnoll and Clark, 2006). Juvenile J. lagostoma populations
vary across islands: 0.7% on Ascension Island, 4.0% at Rocas Atoll
(Teixeira, 1996; Hartnoll et al., 2009), and 16.4% on Trindade
Island (João et al., 2023a). This percentage for Trindade could
increase if individuals from this study are included, showing a
relatively better recruitment scenario. Replicating this study’s
methodology on other islands could confirm co-inhabiting behav-
iour and reveal changes in population structure, contributing sig-
nificantly to the management and conservation of J. lagostoma in
Brazilian islands.

Our findings offer valuable insights into the recruitment of J.
lagostoma, focusing on three key aspects: the behaviour of recruits
in conspecific burrows, growth patterns in morphometric traits,
and the influence of lunar phases on recruitment. While some
findings align with existing literature, others reveal new aspects,
such as co-inhabiting behaviour. These insights enhance our
understanding of the species’ biology and have important impli-
cations for conservation efforts.

Data. The original data of this manuscript are available in https://github.-
com/marcio-joao/j.lagostoma_recruitment.
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